Elliptic Curves Final Examination

May 32023

This exam is of $\mathbf{5 0}$ marks and is $\mathbf{3}$ hours long. Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly. You may use the book 'The Arithmetic of Elliptic Curves' by Joseph Silverman.

Please copy the following sentence on the first page of your answer sheet and write your name and signature.

I have not used any unfair or illegal means to answer any of the questions in this exam.

1. Consider the curve over \mathbb{Q} given by

$$
F_{N}: X^{N}+Y^{N}=Z^{N}
$$

a. Show that it is a smooth curve in \mathbb{P}^{2} and $F_{1} \simeq \mathbb{P}^{1}$.
b. Show that the map $\pi: F_{N} \longrightarrow F_{1}$ given by

$$
\pi(X, Y, Z) \rightarrow\left[X^{N}, Y^{N}, Z^{N}\right]
$$

defines a map from $\pi: F_{N} \rightarrow \mathbb{P}^{1}$ and compute its degree.
c. Compute the genus of F_{N}.
2. Consider the curve over \mathbb{Q}

$$
\begin{equation*}
F_{3}: X^{3}+Y^{3}=Z^{3} \tag{3}
\end{equation*}
$$

a. Show that together with the point $O=[1,-1,0]$ it becomes an elliptic curve.
b. Show that $P+Q+R=O \Leftrightarrow$ They are co-linear.
c. What is the set of 3 -torsion points defined over $\overline{\mathbb{Q}}$?
3. Let E be an elliptic curve over \mathbb{F}_{q} which is a field of characteristic p. Let $\phi: E \rightarrow E^{(q)}$ be the $q^{t h}$ power Frobenius and ϕ_{ℓ} is the corresponding endomorphism of the Tate module $T_{\ell}(E)$ where $\ell \neq p$.
a. Show that E is supersingular $\Leftrightarrow \operatorname{tr}\left(\phi_{\ell}\right)=0 \bmod p$ for any $\ell \neq p$
b. If $p \neq 2,3$ show that E is supersingular if and only if

$$
\begin{equation*}
\left|E\left(\mathbb{F}_{p}\right)\right|=p+1 \tag{5}
\end{equation*}
$$

4. Let \wp be the Weierstrass \wp-function and σ be the Weierstrass σ-function.
a. Show that for all $a, z \in \mathbb{C}$,

$$
\begin{equation*}
\wp(z)-\wp(a)=-\frac{\sigma(z+a)-\sigma(z-a)}{\sigma^{2}(z) \sigma^{2}(a)} \tag{5}
\end{equation*}
$$

b. Prove that

$$
\begin{equation*}
\wp^{\prime}(z)=-\frac{\sigma(2 z)}{\sigma^{4}(z)} \tag{5}
\end{equation*}
$$

5. Let E / K be an elliptic curve over a local field K with ring of integers R, maximal ideal \mathfrak{m} and group of units R^{*}. Assume $\operatorname{char}(K) \neq 2,3$.
a. Let E / K be given by a Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in R$. Prove that the equation is minimal if and only if either $\nu(\Delta)<12$ or $\nu\left(c_{4}\right)<4$ where ν is the valuation.
b. Let E / K be given by Weierstrass equation

$$
E: y^{2}=X^{3}+A x+B
$$

Prove that E has

1. Good reduction $\Leftrightarrow 4 A^{3}+27 B^{2} \in R^{*}$
2. Multiplicative reduction $\Leftrightarrow 4 A^{3}+27 B^{2} \in \mathfrak{m}$ and $A B \in R^{*}$.
3. Additive reduction $\Leftrightarrow A, B \in \mathfrak{m}$
